
Transcoding: Extending
e-business to new
environments

by K. H. Britton
R. Case
A. Citron
R. Floyd

Y. Li
C. Seekamp
B. Topol
K. Tracey

The promise of e-business is coming true: both
businesses and individuals are using the Web to
buy products and services. Both want to extend
the reach of e-business to new environments.
Customers want to check accounts, access
information, and make purchases with their
cellular phones, pagers, and personal digital
assistants (PDAs). Banks, airlines, and retailers
are competing to provide the most ubiquitous,
convenient service for their customers. Web
applications designed to take advantage of the
rich rendering capabilities of advanced desktop
browsers on large displays do not generally
render effectively on the small screens available
on phones and PDAs. Some devices have little or
no graphics capability, or they require different
markup languages, such as Wireless Markup
Language (WML), for text presentation.
Transcoding is technology for adapting content
to match constraints and preferences associated
with specific environments. This paper compares
and contrasts different approaches to content
adaptation, including authoring different versions
to accommodate different environments, using
application server technology such as JavaServer
pagesTM (JSPTM) to create multiple versions of
dynamic applications, and dynamically
transcoding information generated by a single
application. For dynamic transcoding, the paper
describes several different transcoding
methodologies employed by the IBM
WebSphereTM Transcoding Publisher product,
including HyperText Markup Language (HTML)
simplification, Extensible Markup Language
stylesheet selection and application, HTML
conversion to WML, WML deck fragmentation,
and image transcoding. The paper discusses how
to decide whether transcoding should be
performed at the content source or in a network
intermediary. It also describes a means of
identifying the device and network characteristics
associated with a request and using that
information to decide how to transcode the
response. Finally, the paper discusses the need
for new networking benchmarks to characterize
the server load and performance characteristics
for dynamic transcoding.

The phenomenon of the Internet has caused bus-
inesses to rethink their business models, cus-

tomer relationships, and internal processes. Tech-
nology advances have created new opportunities to
reach employees and customers, wherever they are,
with information that is tailored to their needs and
preferences. This information is often already stored
and used in the business, but the delivery system must
be re-engineered to exploit the new technology and
tailor the content so it is more usable. A common
problem with which this re-engineering must deal is
that data or information is stored in some form on
some system, when it is needed somewhere else in
a different form.

The problem of adapting or customizing existing con-
tent to new applications and deliveries is not new.
The user interaction model advanced by the Inter-
net browser, along with portable and interoperable
features of new technologies such as the Java** lan-
guage1 and Extensible Markup Language (XML)2

have created a new opportunity to address this prob-
lem with some common techniques. In contrast, the
rapid appearance of wireless and other new networks
with widely varying characteristics and the prepon-
derance of new devices with a wide variety of capa-
bilities creates new constraints on the solution. De-
vices that are designed to be easily carried and used
in the field trade off some capabilities to gain this
portability. To be easily carried, they must be light

rCopyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 0018-8670/01/$5.00 © 2001 IBM BRITTON ET AL. 153

and small. This requirement limits the types of user
interfaces they can support. Large screens and full
keyboards are impossible; a small screen and tele-
phone keypad are more realistic, although some de-
vices may have only a voice interface. To run on
battery power for useful periods of time, power con-
sumption must be carefully managed, forcing the use
of designs with little storage and processing capa-
bility. To be connected from anywhere requires wire-
less or intermittent wired connections, which limit
the types of interactions and bandwidth available for
accessing content.3

All of these constraints create difficult challenges in
designing a useful system for delivering content to
a wide array of devices. However, if such an infor-
mation delivery system can be created quickly and
cost-effectively and if it integrates with existing in-
formation systems, the value to customers can be im-
mense. Transcoding, or adapting content from one
form to another, is a key part of meeting these re-
quirements for rapid, inexpensive deployment of new
ways to access existing content.

The media signal processing industry first used the
term “transcoding” to refer to the task of convert-
ing a signal, say a television program, from one for-
mat to another (for example, converting the NTSC
(or National Television System Committee) stan-
dard, used in America and Japan, to the PAL (or
Phase Alternating Line) standard, used in much of
the rest of the world), while preserving the content
of the program. Although the term has lately been
used to mean many different things, we use the term
transcoding to refer to the tasks of summarizing or
filtering (which modify content without changing its
representation) and translating, or converting, con-
tent from one representation to another.

Every Web application is associated with a variety
of costs, including those associated with the design
of business logic, creating an attractive layout, de-
ciding which parts of the application to make secure,
publishing the various resources associated with the
application to a Web server or Web application
server, testing the visual appeal of the resulting pages,
testing to see whether the outcome of the applica-
tion is correct, and testing to see whether the ap-
plication works correctly with various browsers and
various different browser versions. Over time, there
are also costs associated with maintaining an appli-
cation, including operational costs for server process-
ing, storage, and network bandwidth, and develop-
ment costs for adding new features, updating the

presentation, retesting, and keeping track of the re-
sources.

The proliferation of wireless devices with very dif-
ferent form factors multiplies the costs associated
with Web applications. Different devices require
pages to be presented in different markup languages,
such as HyperText Markup Language (HTML), com-
pact HTML4 (including a version called imode that
is popular in Japan), Unwired Planet’s Handheld De-
vices Markup Language (HDML),5 Wireless Markup
Language (WML),6 and VoiceXML. Even with a par-
ticular markup language such as WML, different pre-
sentations may be required on different specific
devices. For example, for one WML-based phone,
choices are most appropriately presented as buttons.
For another phone, they might best be presented as
hyperlinks. Other constraints come into play. For ex-
ample, different phones can accept different size
decks, where a deck is a set of information that can
be sent to the phone at one time. Sending a phone
a deck that is too large will cause the application to
fail to display properly. Some forms of content may
be much more expensive for a server or network to
process than others.7 The existence of a growing
number of client devices with different presentation
requirements presents new problems for maintain-
ing an e-business site.

In addition, there are business opportunities for net-
work intermediaries, such as Internet service pro-
viders (ISPs), to make existing Web applications avail-
able to a greater market by making them accessible
from different devices. ISPs do not necessarily own
the content that they serve to their clients. Instead,
they provide value-added services, such as perfor-
mance improvements via local caching. Making in-
formation available in different forms for different
client devices is an additional possible value-added
service for them.

Content adaptation

In the following discussion, application refers to any
form of program that generates information in re-
sponse to requests from Web users, content refers
to the information returned in answer to a request,
and rendering refers to the way the content is pre-
sented to the user, for example, how it is laid out on
a Web page and how the user navigates through the
information. Some markup languages, including
most XML dialects, contain content along with tags
that identify the meaning of different fields in the
content. Other markup languages, such as HTML and

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001154

WML, carry both content and rendering instructions,
since the tags are primarily concerned with the way
the content is presented. Transcoding can modify ei-
ther the content or the rendering associated with an
application. For example, a subset of the content can
be selected for a small-screen device, and it can be
rendered differently to achieve a more pleasing pre-
sentation.

Static Web content includes pages that are presented
to all users in the same way, generally retrieved from
the file system of a Web server. Dynamic Web con-
tent is generated at run time based on information
provided by the user. Dynamic Web content includes
pages that are generated by programs, such as serv-
lets and JavaServer Pages** (JSP**) that run on Web
application servers. In both cases, documents—gen-
erally in some markup language—are produced to
be sent back to the requesting user.

There are two main approaches to handling the need
to present the content delivered by an application
differently in different circumstances, for different
devices, and for different levels of network service.
The first is to design each application for each set
of presentation requirements, transcoding the ap-
plication statically at design time. The second is to
modify the application output automatically on the
fly, essentially transcoding the application dynam-
ically at run time. These two approaches can be com-
bined in various ways to match the requirements of
particular applications. Both static and dynamic
forms of transcoding can be performed with both
static and dynamic Web content. Figure 1 shows a
simple comparison between static and dynamic
transcoding.

Static transcoding. With static transcoding of static
content, different versions of the same content are

Figure 1 Static and dynamic transcoding

CONTENT AND RENDERING

CONTENT AND RENDERING

CONTENT AND RENDERING

CONTENT AND RENDERING

STATIC TRANSCODING

DYNAMIC TRANSCODING

CONTENT

BACK-END
APPLICATION

BACK-END
APPLICATION

RENDERING

RENDERING

RENDERING

RENDERING

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 155

produced by a designer, generally using various stu-
dio tools, and stored in the file system of the Web
server. The main problem to be solved is selecting
the right version of the content for a particular user
with a particular device. One way to perform this se-
lection is to provide the user of a specialized device

with a special home page, often preconfigured in the
device. This home page contains a set of links to con-
tent in the appropriate form for the device. All the
links in this content point to other content appro-
priate for the device. If the users of phones are us-
ing them for specific applications rather than for gen-
eral Web surfing, this method provides appropriate
content with no user actions.

With static transcoding of dynamic content, either
different versions of the application are provided or
the application contains logic that produces differ-
ent versions of the content. In any case, the choice
of version is based on information from the incom-
ing request that describes the device. For example,
there can be a version of a particular JSP that pro-
duces HTML for a full-function browser, another that
produces WML, another that produces VoiceXML,
and so on. Once again, the JSP for the different pre-
sentations are designed by humans who are cogni-
zant of the presentation on the specific target de-
vices. The Web application server may provide
assistance by selecting the correct JSP for the incom-
ing request. For example, IBM’s WebSphere* Appli-
cation Server8 3.5 includes an extensible file called
client_types.xml that it uses to map patterns found
in the HyperText Transfer Protocol (HTTP) headers
to specific output markup language requirements.

The primary advantages of static transcoding are
quality of presentation and performance.9 Each page
is constructed by a human designer, generally work-
ing with tools that show how the application will look
or sound and thus allowing the presentation to be
hand-tailored for each environment. Also, since the
transcoding is done at design time, the information
is generated directly in the form required by the us-

er’s device. This reduces the run-time processing re-
quired to generate the information.

The primary disadvantage of static transcoding is the
number of different pages and applications that have
to be created, tested, organized, and maintained. As
the number of devices increases, the burden of hand-
generating different versions of each application or
page for different presentations will become oner-
ous.

Dynamic transcoding can also work with both static
and dynamic content. In fact, by the time dynamic
transcoding occurs, the content is just content, and
the means of generating it is not important.

Dynamic transcoding. Dynamic transcoding prom-
ises to allow the problem of creating content to be
separated from the problem of creating different pre-
sentations. Dynamic transcoding consists of a set of
techniques for tailoring the information generated
for a user to match the specific presentation require-
ments of a given user on a given device on a given
level of network service. Various dynamic transcod-
ing mechanisms are possible. Several examples are
described later in this paper. They include a mech-
anism to select the proper stylesheet to convert an
incoming XML document into a presentation appro-
priate for a particular output device, a mechanism
to translate from HTML into various other markup
languages, including HDML, compact HTML, and
WML, and clipper mechanisms that extract the sub-
set of the content that is most appropriate for dis-
play on a small-screen device. To the extent that these
mechanisms can be used across a wide variety of con-
tent for a wide variety of devices, they reduce the
overall development and maintenance costs of Web
applications.

Both static and dynamic transcoding have a place in
creating effective e-business sites. Some pages will
be accessed frequently and will be seen as the sig-
nature pages for a business. For these, hand design
will often be important. However, there are a num-
ber of considerations that will make dynamic
transcoding more cost-effective. These include:

1. Is information to be presented that is not under
the user’s direct control? This situation can oc-
cur for various reasons, such as (1) an organiza-
tion has separate groups working on content au-
thorship and its presentation to different devices;
(2) an ISP or a portal provider has legal agree-

Both static and dynamic
transcoding have a place

in creating effective
e-business sites.

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001156

ments with the content owners that allow them
to tailor it for presentation to different devices.

2. What skills does the user have that can be used
to develop the complete system? Static transcod-
ing may need to be done by persons skilled in Web
page design or dynamic content generation. Dy-
namic transcoders may need to be built by per-
sons skilled in Extensible Stylesheet Language
(XSL) stylesheet development or clipper develop-
ment. The most successful projects use a design
that allows for a clean delineation of roles and
responsibilities. That is, the content experts can
generate the content without having to under-
stand the details of page design, server admin-
istration, or device support. The site designers can
create a user experience without understanding
all the details of the content or the many differ-
ent client device types. The presentation customi-
zation experts can focus on the required devices
and their capabilities without the need to under-
stand either the content or site design in detail.

3. Is there only concern about preparing content for
a single device, such as a WML-enabled phone, or
are there other target content types or device re-
quirements? For example, some Wireless Appli-
cation Protocol (WAP) predecessors send HDML.
In Japan, another HTML variant called imode is
popular. Some customers want to present infor-
mation in a speech markup language, such as
VoiceXML. The more different target formats re-
quired, the more work there is to author content
or content generation programs directly for each
one.

4. With WAP phones, are multiple types of phones
being served with different deck sizes? Transcod-
ing can include “deck fragmentation” that takes
care of breaking a page into pieces that can be
accepted by a specific phone, and creating nav-
igation links between them. This facility makes
the job of generating the original content—even
if already in WML—simpler for a variety of phones
with different deck sizes.

5. Can the need be foreseen to support new devices,
such as automotive browsers, within days of their
appearance on the network? If there are a large
number of applications that involve static
transcoding, it may be necessary to upgrade ev-
ery application to support the new device. Any
time an application is modified, the existing sup-
port may need to be retested.

6. How much content maintenance is there? Are
pages or content applications modified fre-
quently? Rapidly changing content may preclude
static transcoding.

7. Is any of the content produced in XML, where
there is a need to apply stylesheets to generate
the right output content for the client device?
Where and how is the linkage between devices
and stylesheets to be maintained? Is it necessary
to be able to send XML documents to browsers
that are not able to apply stylesheets?

Use of XML and XSL stylesheets for content adap-
tation. XML is the universal format for structured
documents and data on the Web and is a standard
recommendation maintained by the World Wide
Web Consortium (W3C**). Because XML is an open,
standard data representation language with ever-in-
creasing support from both business and educational
institutions, it is becoming an almost universal lan-
guage used for a growing number of purposes.

Unlike HTML, which mixes data and display infor-
mation, XML is intended to represent the content and
structure of data, without describing how to display
the information. Although XML allows the structure
of a set of data to be defined, it does not usually pro-
vide information for changing the structure of the
data to conform to a different set of requirements.
For instance, if business A uses one structure to rep-
resent a set of data and business B uses a different
structure to represent the same type of data, XML
itself does not provide the information to transform
the data from one structure to the other. However,
the World Wide Web Consortium maintains a stan-
dard recommendation called XSL Transformations
(XSLT). XSLT is a language for transforming XML doc-
uments into other documents. It can be used to trans-
form XML into markup languages suitable for dis-
play (like HTML), or into XML documents having a
different structure. Documents written for use by
XSLT engines are called stylesheets.

One of the major design issues related to the eco-
nomics of maintaining Web applications is whether
to use XML in place of rendering-based markup lan-
guages, such as HTML or WML. For many businesses,
it makes sense to extract content into a single-use
format that describes the semantics of the informa-
tion. This format is more widely useful than the same
content in an HTML format or WML format that
cannot be easily manipulated for other data access
requirements, such as business-to-business interac-
tions. Reduced information technology infrastruc-
ture costs can come from writing the data extraction
programs once into a single form, in this case XML,
that can be used for many different data processing
requirements. Once the decision to move to an XML

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 157

deployment model has been made, transcoding via
XSL stylesheets can transform the data into a wide
variety of business interchange and rendering for-
mats, including HTML and WML.

However, there are costs involved in writing and
maintaining XSLT stylesheets. For these costs to be
lower than maintaining different versions of the ap-
plication, stylesheets have to be written intelligently,
with parameters that allow a single stylesheet to work
for multiple presentations and with reusable chunks
that can be used across a large number of applica-
tions. Otherwise, an organization will end up need-
ing to write and maintain a large number of
stylesheets. Moreover, as XML and XSL mature, tools
that reduce the effort to create stylesheets will be-
come readily available, thus further reducing the
amount of time required to be dedicated toward writ-
ing stylesheets. Finally, well-known techniques for
representing user interfaces in a generic fashion such
as those employed by Dharma10–13 can be leveraged
to make XSL a more general-purpose language.
These approaches cause the original XML content
to be first transcoded to an XML document that rep-
resents a user interaction. From there, general-pur-
pose stylesheets can transcode the content to the ren-
dering markup language appropriate for a specific
requester.

Dynamic transcoding as implemented in
WebSphere Transcoding Publisher

In March 2000, IBM released WebSphere Transcod-
ing Publisher (WTP),14 a product that performs sev-
eral kinds of dynamic transcoding and can be de-
ployed in different ways. WTP is designed as a
“backbone” and “plug-ins.” This structure is shown
in Figure 2. The backbone includes the function to
dynamically route individual requests to the proper
transcoders, based on the document source URL (uni-
form resource locator), device characteristics, net-
work capabilities, and user preferences.

Specific types of dynamic transcoding implemented
in WTP are described in this paper, including:

● HTML simplification: modifying HTML documents
to tailor them for reduced function devices, for ex-
ample, by removing unsupported features

● HTML to WML transcoding: transforming HTML
documents into Wireless Markup Language doc-
uments suitable to be sent to WML-based phones

● XML stylesheet selection and application: select-
ing the right stylesheet to convert a particular XML
document for presentation on a particular device

● Fragmentation: breaking a document into frag-
ments that can be handled by a particular device

Figure 2 The structure of the WebSphere Transcoding Publisher

TRANSCODING FRAMEWORK

ADMINISTRATION

• COMMON RULES FOR PERFORMING TRANSFORMATIONS
• COMMON FRAMEWORK FOR PLUG-IN INTEROPERABILITY

• FRAMEWORK CONFIGURATION
• USER PREFERENCE AND DEVICE PROFILES
• REGISTRATION OF STYLESHEETS

DEVELOPER
TOOLKIT

IMAGE
ENGINE

TEXT
ENGINE:
HTML

TEXT
ENGINE:
XML

OTHER IBM
TRANSCODERS

THIRD-
PARTY
TRANSCODERS

• EXISTING PLUG-IN MODIFICATION
• CUSTOM PLUG-IN DEVELOPMENT
• NEW PROFILE DEVELOPMENT

• KNOWLEDGE OF DEVICE, USER, APPLICATION
OR NETWORK PREFERENCES TO CONTROL
TRANSFORMS

• CUSTOMER-PROVIDED
TRANSFORMATION
PLUG-INS

• READILY AVAILABLE TRANSFORMATION PLUG-INS

PROFILES

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001158

and creating the navigation links between the frag-
ments

● Image transcoding: modifying images by convert-
ing them to different formats or reducing scale or
quality, or both, to tailor the image for presenta-
tion on a particular device

The paper also explains the different deployment op-
tions, including criteria for selecting a particular op-
tion. WTP may be deployed:

● As a stand-alone proxy that is interposed between
the client device and the Web server

● As a proxy that pulls transcoded results through
a separate caching proxy product, such as Web-
Sphere Traffic Express or the National Science
Foundation’s Squid

● As a MIME (Multipurpose Internet Mail Exten-
sions)-filter servlet running in WebSphere Appli-
cation Server

● As a set of JavaBeans** transcoders that can be
called by servlets, JSP, or other programs.

Finally, the paper discusses some future transcod-
ing possibilities that could be implemented as Web-
Sphere Transcoding Publisher extensions or as sep-
arate products.

HTML simplification. Although powerful full-func-
tion workstation browsers such as Netscape Com-
municator** 4.5 (and later) and Microsoft Internet
Explorer** 4.5 (and later) are widely used, many less
powerful devices have browsers that support only a
subset of the HTML functions supported by the more
powerful browsers. In addition, because some features,
although supported, might so strain the resources of
the device that they are troublesome, a user might pre-
fer to have a less expensive construct substituted.

For example, there are numerous handheld comput-
ers running the Windows CE** operating system,
which uses a reduced function version of Microsoft’s
Internet Explorer browser. Early versions of the
browser do not support Java applets. Devices with even
more constrained resources, especially memory and
processing power, may have browsers with even less
support for HTML functions, such as frames, Java-
Script**, and perhaps even tables. As the different types
of somewhat limited devices that provide some type
of HTML browser to allow accessibility to the Internet
grow in number, the permutations of HTML capabil-
ities that are and are not supported also grow.

Despite the large number of limited-function devices,
much of the HTML content being written today is pro-
duced to take advantage of the advanced capabil-
ities of powerful workstation browsers. Rather than
each content provider producing multiple versions
based on the capabilities of each possible client de-
vice, it is desirable to allow the content to be cre-
ated once. Transcoding can be used to transform the
content into a form suitable for the client device. In
WebSphere Transcoding Publisher, this process of
transforming the HTML content based on the capa-
bilities of the client HTML browser is called HTML sim-
plification. This transcoding could be done in two ways:
(1) create transcoding function unique to each differ-
ent device type, or (2) characterize the capabilities of
devices in some way and use these characteristics as
parameters to direct the transcoding function.

For the reasons discussed earlier, and considering
the rapidly growing number of different types of de-
vices supporting HTML browsers with differing lev-
els of support, the WebSphere Transcoding Pub-
lisher took the second approach. By using a set of
properties that describe the capability of a given
browser to render various HTML elements, a profile
describing the browser can be generated. This pro-
file provides sufficient information to direct the
transcoding process. In WTP these descriptive prop-
erties are referred to as preferences, because in some
cases these parameters are truly what is preferred in
the context of the environment in which such devices
might be used, such as using a wireless connection
to access the Internet. In a wireless environment, the
textLinksPreferredToImages preference might be set
to true, indicating that the HTML simplification pro-
cess should generate a link to a separate page con-
taining an image rather than automatically down-
loading it and rendering it in-line in the page, thus
giving the user the choice of whether to spend the
time and byte transmission cost of downloading the
image to the device.

As another example, some limited-function brows-
ers are unable to render HTML TABLE elements.
For this case, WTP uses a convertTablesToUnor-
deredLists preference that can have a Boolean true
or false value. For a limited browser that does not
support tables, this value is set to true to indicate that
the table should be converted into an unordered
(nested) list. This preserves the relationship between
nested tables by representing them as nested unor-
dered lists.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 159

Currently, approximately 20 preferences in WTP can
be used to guide the HTML simplification process,
including preferences that indicate which types of
image formats are not supported, whether frames
are supported, and whether images should be re-
moved entirely.

HTML simplification is only applicable if the con-
tent is marked in HTML. The HTML simplification
described here is available in WebSphere Transcod-
ing Publisher. It is customizable using the prefer-
ences, but flexibility is currently limited to those
preferences. Table 1 shows an example of HTML
simplification. Figures 3 and 4 show the before
and after HTML files from Table 1 rendered in a
browser.

XML stylesheet selection and application. An in-
creasingly used approach with XML is to generate
content in XML and use XSLT stylesheets to transform
the information into a form suitable for display, or to
transform the structure to a different one suitable for
another party. Thus, XSLT stylesheets can be written
to support display of XML content as well as to support
the use of XML in electronic data interchange (EDI).

WebSphere Transcoding Publisher provides a frame-
work to aid in using XSLT stylesheets to transform
XML documents. The WebSphere Transcoding Pub-
lisher includes a version of the Xalan XSLT proces-
sor, an open-source XSLT processor supported by the

Apache XML Project.15 The major benefits that WTP
provides in dealing with XSLT stylesheets and their
application to XML documents is a structure for or-
ganizing stylesheets and support for defining the cri-
teria used for selecting the proper stylesheet to be
used in the transformation of XML documents. For
example, an organization might generate content in
XML and create different stylesheets to render the
content for display on different device types. They
might create one stylesheet for generating an HTML
version, another for a WML version, and so on. A WTP
administrator registers a given stylesheet with WTP,
providing the location of the stylesheet, the content
type generated (for example, text/HTML), and selec-
tion criteria that must exist in the context of an in-
coming XML document request in order for the
stylesheet to be used in transforming that XML doc-
ument. For example, key-value pairs representing
properties associated with a given device, such as the
descriptive name of the device, can be used as cri-
teria, guaranteeing that the stylesheet will only be
used on requests originating from such devices. Ad-
ditionally, conditions matching all or a portion of a
given document URL can be specified, guaranteeing
that the stylesheet will only be used on one or a small
number of documents originating from a given server
location.

As more and more enterprises use XML and
stylesheets, many interesting issues arise. For exam-
ple, the document type definitions (DTDs) defining

Table 1 HTML simplification with preferences indicating that images should be converted to images to links and that tables
should be converted to unordered lists

HTML Fragment Simplified HTML

,HTML. ,HTML.
,body. ,body.
,img src5"images/house.gif" ,br.
alt5"Picture of a House".,/a. ,A
,table. HREF5"images/house.gif/PVC_PHANTOM_GENERATOR".
,tr.,td.991105001PB,/td. Picture of a House,/a.,br.,/a.
,td.Ranch,/td. ,ul.
,td.$207,000,/td. ,li.991105001PB,/li.
,td.4,/td.,td.2,/td.,/tr.,tr. ,li.Ranch,/li.
,td.991105002PB,/td. ,li.$207,000,/li.
,td.Split Level,/td. ,li.4,/li.,li.2,/li.
,td.$237,000,/td. ,li.991105002PB,/li.
,td.5,/td. ,li.Split Level,/li.
,td.2.5,/td. ,li.$237,000,/li.
,/tr. ,li.5,/li.
,/table. ,li.2.5,/li.
,/body. ,/ul.
,/HTML. ,/body.

,/HTML.

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001160

a given type of structure of an XML document and
the stylesheets used to manipulate such documents
might be considered important proprietary resources
and need to be kept secure. Also, as the number and
types of devices allowing Internet access increase,
an approach based on different stylesheets for each
device type could cause the number of stylesheets
an organization needs to create and maintain to in-
crease precipitously. As WTP and stylesheet tools
evolve, there will be increasing support for stylesheet
parameterization and stylesheet internalization, and
increasingly complex criteria for selecting the right
set of stylesheets for a given purpose. Stylesheets are
standard, general, and extensible, but using stylesheet
transcoding requires that an XSL stylesheet be writ-
ten to perform the desired transcoding.

Transformation of HTML into WML. The Wireless
Markup Language (WML) is an XML-based markup
language intended for use in specifying content and
user interface information for narrowband devices,
including pagers and cellular phones. It is part of the
Wireless Application Protocol (WAP) standard from
the WAP Forum.16 WAP-enabled phones are becom-
ing more and more prevalent, especially in Europe,
with the Nokia Group and others manufacturing
phones that support the WAP wireless standard. Many
enterprises that now provide information access to
users using desktop browsers wish to support their
mobile users who would like to access their infor-
mation by using WAP devices, but the enterprises do
not wish to expend the resources to provide content
in both HTML for workstation browsers and WAP de-

vices. WTP provides transcoding support for trans-
forming HTML into WML.

WTP transforms HTML into WML in a two-step pro-
cess, with an optional third step to further refine the
result. The first step takes the original HTML doc-
ument and converts it into a Document Object
Model (DOM) representation using an HTML parser
developed by a team at the IBM Tokyo Research Lab-
oratory. The DOM is essentially a tree structure, con-
forming to a World Wide Web Consortium require-
ments standard.17 Using standard Java application
programming interfaces (APIs) for traversing and
manipulating the DOM, the second step modifies the
HTML DOM, creating a DOM containing WML ele-
ments, conforming to the WML standard. This trans-
formation is done on an element-by-element basis.
For example, an HTML document starts with an HTML
element (node), whereas a WML document starts with
a WML element. Thus, the transformation logic re-
sponsible for processing the HTML node replaces this
node with a WML node in the DOM.

The logic for dealing with a particular HTML element
falls into one of three categories:

1. The transformation requires unique logic, such
as the HTML example described above.

2. The source element, and all the children under it,
are simply deleted. An example is the APPLET el-
ement, which represents a Java applet. Since it is
not possible to transform the Java applet into some

Figure 3 Original HTML page displayed in a browser Figure 4 Transcoded HTML page showing the simplified
layout

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 161

other form for execution on the WAP device, the
APPLET element and its contents are simply deleted.

3. The source element is replaced by its children.
That is, everything under the top element replaces
the top element itself. For example, the SUP
element, which indicates text contained within
it should be rendered in a superscript font, is
replaced by the text it contains, since superscript
fonts are not supported in WML. In text form,
this would be seen as replacing “,SUP.special
text,/SUP.” with simply “special text.”

The first case above requires special logic for each
transformed element, whereas the second and third
cases can each be handled by a single processing
module, with the HTML elements to be handled sim-
ply by providing them to the module in the form of
some list. Thus, the module responsible for deleting
elements and their children is given a list of element
names that should be transformed in this way.

Once a document has been converted to the target
markup language, it can be further tailored by a step
called text clipping. There are a couple of reasons why
this might be beneficial:

1. The application of generic transformation logic
to a specific document, although resulting in a
valid WML document, may still not result in the
most visually pleasing results.

2. The transcoded document may contain a large
amount of unnecessary content that tends to ob-
fuscate the key information the user was request-
ing. For example, although it may be reasonable
to provide links to every product and department
in a company in a table at the top of a page ren-
dered on a powerful desktop browser, these links
may just frustrate the user as he or she has to scroll
past themtofindthe informationactually requested.

There are three ways in which the text clipping pro-
cess might be accomplished:

1. Because WML is an XML-based language, XML
stylesheets can be used.

2. The transcoding logic can work with the text form
of the document, using traditional string manip-
ulation functions to locate the points at which to
remove text.

3. The transcoding logic can operate on the DOM
directly.

All of these approaches require that specialized logic
be written, in either Java or XSL, to perform the de-
sired clipping.

The first approach, applying stylesheets to XML, was
explained in the previous subsection and is not ex-
plained further here. Experience has shown that the
second approach can have serious limitations unless
the content never changes. Assume that the content
is a weather forecast and that the main forecast de-
scription is preceded by the string “Local Forecast.”
Suppose, “Local Forecast” was enclosed in a B (bold
typeface) element:

,B.Local Forecast,/B.

Note that if we search simply for the string “Local
Forecast” and remove the text prior to this point,
the result is

Local Forecast,/B.

which is invalid, because there is an ending tag
(,/B.) without the beginning tag (,B.). The so-
lution to this problem is to search for the exact text,
including tags. However, even a small change to the
content, such as the B tags being replaced with I (ital-
ic) tags, would make the transformation fail.

The third text clipping approach, working directly
with the DOM, has distinct advantages. Individual nodes
in the DOM tree represent the beginning and ending
tags of the element, so that when a node is removed,
there is no problem with removing the beginning tag
without the ending tag. Also, it is possible to search a
portion of the DOM for text regardless of the element
nodes of which they are children. For example, it would
be possible to search for the text node “Local Fore-
cast” regardless of the fact that the text was a child
of a B or an I node. To aid in the creation of text
clippers that operate on the DOM, WTP provides func-
tions such as findNodeMatchingPattern, which
searches under a particular node in the DOM for a
text node whose text matches a given regular expres-
sion pattern, and findSiblingMatchingPattern, which
searches under siblings of a given node and their chil-
dren for a text node matching a given pattern. With
use of such functions to allow searching and mod-
ification of the DOM based on string patterns, it is
possible to write text clipping transformations that
can withstand minor changes to the source content
without requiring updates to the text clipping logic.

Figures 5 and 6 show tree representations of a DOM
before and after clipping. The DOM in Figure 6 is
created from the DOM in Figure 5 by a Java clipper
performing the following steps:

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001162

1. Find the paragraph (P) node in the document.
There should only be one of these generated by
the previous HTML to WML transcoding step.

2. Search for a child node of the P node that has a
text node somewhere beneath it containing the
string “Stock Quote.”

Figure 5 DOM created by an HTML to WML transcoding step

NYSE:
IBM

STOCK
QUOTE

WML

CARD

P

B

AAABR DO

BR

STRONG STRONG

LAST
UPDATE

••• ••• ••• •••

Figure 6 “Clipped” DOM, created from the previous DOM by a Java clipper

NYSE:
IBM

STOCK
QUOTE

WML

CARD

P

B

ABR DO

BR

STRONG STRONG

LAST
UPDATE

• • • • • •

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 163

3. Remove all siblings before the node found in
step 2.

4. Look at all siblings following the node found in
step 2 until we reach the first anchor (A) node.

5. Starting with the anchor node found in step 4, de-
lete all nodes until we find the node that contains
a text node beneath it containing “Last Update.”

6. Starting with the node found in step 5, keep all
sibling nodes until the next anchor node is
reached. (Note that the last node before the first
anchor node found is a STRONG node.)

7. Starting with the anchor node found in step 6, de-
lete all following sibling nodes until a DO node
is found.

The HTML to WML transcoding approach described
above can be used for transforming HTML to other
markup languages, such as HDML, compact HTML,
or imode.

WML deck fragmentation. WML content, as defined
by the WAP Forum, is organized for rendering in a
card, similar to a page in HTML. A collection of cards
is known as a deck. A single WML file contains a deck
and its component cards, allowing several cards to
be delivered to the phone in one request, even
though only one card is displayed at a time. Many
devices such as WML phones have a limited memory
capacity. Thus they present a special challenge for
transcoding, since the transcoded content delivered
to the device must not exceed the capacity of the de-
vice. In general, HTML pages that are converted to
WML as described above will not fit in the limited
storage available on these devices. Even content that
is generated as WML originally may exceed the de-
vice limit. All such content must be subdivided so
that each subdivided piece will fit in the device. In
WTP, the process of breaking up such pages into ac-
ceptably sized pieces is called WML deck fragmenta-
tion. This procedure is performed by the WML frag-
mentor. Although the initial implementation works
with WML, the same techniques are easily applied to
other markup languages such as imode.

If the WML fragmentor needs to fragment a WML
deck generated by the HTML-to-WML transcoding
process, it can retrieve and operate on the DOM cre-
ated for the document during that process. Other-
wise the fragmentor parses the WML text itself in or-
der to create a DOM. In either case, the fragmentor
performs all of its operations on the deck as repre-
sented by a DOM, not on the plain WML text.

When presented with a WML deck that may need to
be fragmented, the fragmentor must first determine
both the maximum size deck that may be delivered
to the device, and the size of the input deck as it will
be presented to the device. The first piece of data
is a configuration parameter associated with the user-
agent field present in the HTTP request that produced
the deck. The second is determined by “walking” the
DOM that represents the deck and counting the size
of each node as it will be seen by the device. When
doing this counting operation, the fragmentor takes
into account the binary encoding for WML tags that
will be performed by the WAP gateway.

If the deck exceeds the maximum allowed size, then
the fragmentation process begins. First, the individ-
ual cards are removed from the deck so that each
may be considered independently. If a single card
by itself exceeds the maximum card size, it must be
fragmented into smaller subcards. A card is frag-
mented by walking the DOM that represents the card,
keeping track of places in the tree where the card
may be fragmented. The fragmentor will fragment
on either ,p. or ,br. tags. As the fragmentor vis-
its each node in the tree, it determines the size of
the card that would be produced if the main card
was fragmented at this node. The fragmentor con-
tinues walking the DOM until this new card size ex-
ceeds the maximum. Once this limit is reached, the
fragmentor ceases walking the DOM and fragments
the card at the last noted fragmentation point. This
process may be repeated for the card remaining af-
ter fragmentation, if its size still exceeds the max-
imum allowed. Each card that is oversized is frag-
mented in this fashion.

Note that as a card is fragmented, links are added
so that the user may navigate from one card to an-
other. Each fragment contains a ,prev. element
to allow navigation to the previous card, and a ,go.
element that will move the user to the next card in
sequence. Figure 7 shows an example of linking frag-
ments together in this way.

Once all of the individual cards are small enough,
they are arranged into decks so that each deck is not
larger than the maximum deck size. Unique deck
names are generated by the fragmentor based on the
original request URL. The final step in the fragmen-
tation process is called link rebinding. During this
step, the text of the HREF (the parameter specifying
the URL of a linked resource) attributes of all links
found in the decks is adjusted so that the target name

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001164

is correct, based on the name of the deck in which
each card was placed.

At this point the fragmentor sends the first gener-
ated deck to the device and stores the remaining gen-
erated fragments in the resource repository. The re-
source repository is simply a general-purpose storage
facility maintained by WTP that allows for retrieval
of one of the decks when a request is received for
it. Such a request will be generated when a user fol-
lows any of the links in the first deck that point to
a card in one of the other generated decks. Decks
in the resource repository must eventually time out
and be removed. Any one of a variety of cache al-
gorithms may be used to determine when to remove
decks from the repository. If a request is received
for a deck that has been removed from the repos-
itory, then a deck is generated that contains an er-
ror message indicating that the fragment has expired
and the original deck must be requested.

The WTP WML fragmentor described here works on
any WML deck without any customization.

Image transcoding. The final type of dynamic
transcoding we discuss is image transcoding. Images
that view well and render (reasonably) quickly on a
desktop browser connected to a local area network
(LAN) may not appear in a usable form on the low-

quality and small-sized screens of handheld devices.
In addition, they may take unacceptably long to
download and render on such devices. Finally, some
devices do not support all image formats; therefore,
to display an image at all it may be necessary to con-
vert from the original image format to one supported
by the device before transmitting the image to the
device.

Image transcoding is performed in WTP by the im-
age engine. Figure 8 is an example of an image pro-
cessed by the image engine. The image on the right
in the figure has been scaled and converted to gray
scale to reduce the image size for display on a wire-
less device. Given an input image to transcode, the
image engine must determine three things: the out-
put format that should be used for the image, the
scale factor to be applied to the image, and the out-
put quality of the image. “Output quality” is a some-
what vague term. It is a measure of how “good” the
image will appear on the screen. High-quality im-
ages will look sharp and clear, but will generally be
considerably larger (in bytes) than lower-quality im-
ages. Also, note that low-quality screens may be in-
capable of displaying a high-quality image. In this
case it is preferable to use a lower-quality image as
output, since that will speed both transmission and
rendering time.

Figure 7 Example of WML deck fragmentation; arrows represent links, either within or between fragments

Deck1

Card1

TARGET

LINK

FragDeck1

FragCard1

TARGET

CONTINUE

FragDeck2

FragCard2

RETURN

LINK

•

•

•

•

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 165

Deciding the output format for an image is straight-
forward. If the input image is in a format accepted
by the device, the format is not changed. Otherwise,
the output format is set to be the first of the formats
supported by the device (as determined by the user-
agent, or UA, field in the HTTP request).

Scale factor may also be a simple configuration pa-
rameter associated with the requesting device. Gen-
erally, it will be set so that images appear relatively
as big on the screen of the requesting device as they
would on a desktop screen. Windows CE devices,
however, do not have a fixed screen size. Rather, the
screen size is indicated by the UA-pixels header in-
cluded in the HTTP request. When this header is
present, the image engine can use this information
to dynamically calculate a scale factor based on the
difference in size between the screen described by
a UA-pixels header and some (configurable) standard
screen size.

Finally, output quality is determined by combining
information about the quality of the screen of the
requesting device and the configured trade-off that
should be made between quality and size for this re-
quest. The screen quality is a configured parameter
for the device, and may be set to “high,” “medium,”

or “low.” The trade-off configuration parameter will
generally be associated with a network type: Over
a slow wireless link it would be better to favor small
size over high-quality images, whereas over a LAN
connection high quality would be preferred, since
there is little to be gained in reducing the image size.
Over a dial-up connection it would be appropriate
to compromise between the two. The image engine
first chooses a tentative output quality based on the
screen capability, and then adjusts this size down-
ward if the trade-off parameter is set to either com-
promise or favor small size.

The WTP image engine described here works with-
out customization using defaults for preferences
based on the client device type.

Source identification and preference
aggregation

One of the major goals of WTP is to tailor the con-
tent sent to the user based on the user’s environ-
ment—especially the device and connectivity lim-
itations. The following two major steps are needed
to accomplish this:

Figure 8 Example of image transcoding–a screen capture from the “Transform Tool” in WTP

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001166

1. Identify the characteristics, constraints, and pref-
erences for each environment source. Such
sources include device types, network types, and
users. This step is a configuration step. In WTP
the characteristics, constraints, and preferences
are all given the single name preferences and are
defined as key-value pairs consisting of a name
and a value. For a given incoming request for
some document or image from a user, identify the
environment sources. For example, when a user
requests www.ibm.com via a browser running on
some client device, WTP tries to determine source
information such as device type and network
type18 to determine what information is neces-
sary to provide the most suitable transformation
of the requested document. This step is called
source identification.

2. Given multiple sources of preference information,
provide the value of a given preference to use
when requested by some transcoding logic. This
issue is trivial when only one of the sources pro-
vides a value for a given preference. However, it
is possible, for example, that both the device
source and the network source provide a value
for a given preference. In such a case, it is de-
sirable to have some single mechanism respon-
sible for taking multiple values for a given pref-
erence and providing a single value. With use of such
an approach, numerous transcoding modules can
be written using preference values, but without
regard to how these values were determined. In
WTP, the mechanism that provides this function
is called the preference aggregator, because it “ag-
gregates” multiple values into a single value.

Source identification. Identifying the device source
type for an incoming HTTP request is based on the
user-agent field in the HTTP header. For example, the
user-agent field for an English language version of
the Netscape Communicator 4.7 browser running on
a Windows NT** system is “Mozilla/4.7 [en] (WinNT;
U).” The user-agent field for the Netscape Commu-
nicator 4.6 version was identical, except that it spec-
ified “4.6” rather than “4.7.” Rather than requiring
source identification on exact matches on the entire
user-agent string, WTP supports source identification
based on a portion of the user-agent string. For ex-
ample, specifying the pattern “*Mozilla/4.*” would
mean that any browser with a user-agent string con-
taining the string “Mozilla/4.” would match the pat-
tern. Additionally, WTP supports device source iden-
tification via pattern expressions combined via logical
operators. Thus, the expression:

(user-agent5*Mozilla/4.*)u(user-agent5
Mozilla/5.)

means that any user-agent string containing
“Mozilla/4.” or “Mozilla/5.” would match the pat-
tern expression.

For network source identification, WTP currently
does not have the benefit of an HTTP header field
like the user-agent field used for device source iden-
tification. In the future, if WTP is used with some type
of (perhaps wireless) gateway, it may be possible to
receive some network connection identification in-
formation. Currently, WTP provides a much more ba-
sic mechanism. When operating as a transcoding
proxy, WTP supports the use of separate Transmis-
sion Control Protocol ports to identify the type of
network connection being used. That is, WTP can be
configured to understand that port 8089 is a wireless
network connection. Thus, if the browser of a client
device is configured to connect to the WTP proxy via
port 8089, a request from that device will then be as-
sumed to be coming in via a wireless connection. There-
fore, the wireless network profile will be used. The stan-
dard WTP configurationcomeswithdefault,wireless, and
14.4 profiles configured on different ports, but these
can be changed or additional ones added.

Preference aggregation. For a given request, if more
than one preference source has a value for a given
preference requested by a transcoding module, the
preference aggregator must provide a single value.
In most cases, for a given preference name, the value
specified in one source profile should take prece-
dence over the value in another source profile. For
example, the value of compressSource preference
for the Windows CE device profile is false, meaning
that no attempt should be made to reduce the size
of HTML elements (by reducing noncritical attributes)
sent to such devices. However, the wireless net-
work profile specifies a value of true for the com-
pressSource preference. For a request from a Win-
dows CE device using a wireless connection, how
should the value of compressSource be resolved?
The preference aggregator allows a precedence or-
dering to be specified to help resolve such conflicts.
The default precedence ordering that is configured is:

user, network, device, user-default,
network-default, device-default

This ordering states that for a given preference name,
if there is a specific (not default) user profile and it

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 167

contains the preference value, it should be used. If
not, if there is a specific (not default) network pro-
file and it contains the value, it should be used, and
so on. Thus, in our example, since WTP does not cur-
rently have a way of identifying specific users, there
is a default user profile in addition to the wireless
network profile and Windows CE device profile.
Thus, given the above ordering, since there is a spe-
cific network profile (wireless) with a value of com-
pressSource, its value (true) takes precedence. Be-
cause the same generic precedence ordering may not
be appropriate for all preference values, WTP allows
a different precedence ordering to be specified for
preference names for which such an ordering is ap-
propriate.

In some cases, rather than choosing a single value
based on a precedence ordering, it might instead be
desirable to combine the multiple values in some way.
For example, it might be desirable to say that for a
given preference whose value is Boolean, if either
the network or device value is true, the value should
be true. WTP also supports this capability on a pref-
erence-by-preference basis.

In order to provide such flexibility, the preference
aggregator employs a rules mechanism. Generic
rules, such as the one providing the default prece-
dence ordering, are supplied, but preference-specific
rules can be supplied as needed. As is typical with
any rules engine, once a given preference has been
resolved, the rules are not needed to resolve the value
again. In WTP, a preference value remains for the
life of a request because each request is distinct and
can have different source information. The rules
themselves, although actually Java classes, can be
written in text form and then parsed and compiled.
The rules language uses a compiled scripting lan-
guage, NetRexx,19 as an underlying scripting lan-
guage so that powerful expressions can be supported
without having to use a totally new scripting lan-
guage. NetRexx, which is compiled into Java, can be
used on any platform on which Java can be used.

At initialization time, and when preference profiles
are updated because of configuration changes, rules
based on the key-value pairs contained in the pref-
erence profiles are dynamically generated. Although
the rules are compiled, there is still a run-time cost
associated with interpreting the rules. In order to
minimize the performance impact of using these
rules, an analysis of the rules is done immediately
after the dynamic generation of rules from prefer-

ence profiles is done, and those rules that are de-
rived based solely on source identification are cached
so that their values can be “looked up” based on
source identification information from the request
without having to actually interpret the rules.

The rules-based mechanism provides almost unlim-
ited flexibility in extending the preference aggrega-
tion mechanism, while allowing transcoding module
writers to use preferences without worrying about
how the values are resolved. In addition, the pref-
erence aggregation mechanism can be updated by
an administrator without installing a new version of
the product and without having to be a Java program-
mer.

Deployment models

Transcoding must be interposed at some point be-
tween the generation of the initial content and the
final rendering on the client device. Three locations
are available in the current Web architecture:

1. The client device
2. An intermediate point in the network, such as a

proxy or firewall
3. The source of the content

Figure 9 shows a simplified picture of a network con-
figuration and the potential transcoding placement
locations. Each has its strengths and weaknesses.
Therefore, combinations of the approaches may be
useful in some situations.

The Web experience is, today, still largely oriented
toward a client model that assumes a high-bandwidth
network connection and workstation capabilities.
Content that is designed based on these assumptions
is not usually appropriate for display on lower-ca-
pability devices or for delivery on low-bandwidth or
high-cost connections. This is the crux of the prob-
lem when performing client transcoding. When we
first started looking at client transcoding options for
WebSphere Transcoding Publisher, we tried visiting
a variety of sites on the Web. It could and did take
20 minutes or more to view some pages using a
dial-up or wireless connection. Even over faster links,
the very limited rendering speeds and capabilities
of handheld devices will usually make pure client-
side transcoding an unworkable solution. Image
transcoding can be particularly problematic for cli-
ents because of its computationally intensive nature,

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001168

large image sizes, and the potentially very high com-
pression rates.20

Independent of the transcoding placement issue,
there still needs to be a Web-capable presence on
the client device. Additional client-side presence can
be useful in providing transcoding-specific user op-
tions (such as image-specific transcoding options) or
a controlled client environment.21 Such a client can
also provide additional information about client de-
vice capabilities, although emerging standards such
as composite capability/preference profiles (CC/PP)22

are expected to supplant this role.

WTP assumes only that there is Web rendering soft-
ware of some sort on the client device and that the
HTTP headers generated by the device either specify
the capabilities of the device or allow it to be inferred.
Currently available Web-capable devices meet this
requirement through the use of user-agent and other
descriptive headers. This allows WTP to effectively
transcode for a wide variety of devices without ad-
ditional client presence.

A second deployment option is at an intermediate
point in the network, such as a firewall or proxy. In
this model, all client requests are directed to the in-
termediate representative that forwards them on to
the specified destination server. Most Web clients
support use of proxies for at least HTTP. WTP can be

configured to run as an HTTP proxy, and in this mode
can transparently transcode content for these clients.

In the proxy model, all HTTP responses flowing to
the client can be transcoded, regardless of the server
producing the content. This approach, combined
with the preference-based transcoding of WTP, al-
lows new client devices to be easily added to a net-
work. For example, a business that wishes to give em-
ployees with WAP phones access to internal Web
content can do so by using a WAP gateway (for pro-
tocol conversion) and WTP proxy (for content
transcoding), without requiring content to be spe-
cifically authored for the phones, and without im-
pacting servers generating content.

There are some drawbacks to the proxy approach
for transcoding. The use of encryption such as se-
cure sockets layer (SSL) to protect data precludes
transcoding via a proxy. This drawback could be ad-
dressed by allowing the proxy to act as both an end-
point and a source for SSL connections. However,
this additional point of exposure may not be accept-
able to some users. It also imposes a significant per-
formance penalty at the proxy.

Another potential concern of the proxy-based ap-
proach is legal, rather than technical. Some provid-
ers of content also wish to control the presentation

Figure 9 Placement options for transcoding function in a network

CLIENT HTTP REQUEST

POTENTIAL TRANSCODING POINTS

HTTP RESPONSE

WEB SERVER
(CONTENT SOURCE)

HTTP
PROXY

WEB SERVER
(CONTENT SOURCE)

•
•

•

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 169

of this content, and so will not want it to be
transcoded outside their control. Although this re-
striction will not be a concern in the corporate in-
tranet example presented above, it can limit deploy-
ment in the external Internet environment.

A final area of concern with this approach is in ex-
tending the proxy with new transcoders. In the Web
server environment, de facto standards such as the
servlet API provide a widely supported method for
extending function. There is no similar API yet in
place for proxies. WTP is based on the Web Inter-
mediaries (WBI) framework,23 and supports exten-
sion via the WBI API. In addition, WTP allows
transcoders written to the servlet API to be deployed
in a WTP proxy.

Dynamic transcoding can be a relatively resource-
intensive activity. Fortunately, techniques available
for spreading requests across Web servers or prox-
ies may also be used with a transcoding proxy. IBM’s
Network Dispatcher, for example, can serve as a front
end for multiple transcoding proxies. This configura-
tion is shown in Figure 10. WTP instances do not share
transcoded data, and so session affinity mechanisms
in Network Dispatcher are used to ensure that re-
quests depending on a previous state (for example,
deck fragmentation) are routed back to the correct
instance of WTP.

A final option is to provide transcoding at the source
of the data. This option, content source transcod-
ing, is attractive for a number of reasons. It requires
no client configuration since there is now no inter-
vening proxy. For clients that do not support HTTP
proxies, such as some WAP phones, it may be the only
workable option. Since the transcoding is coresident
with the content, the content provider has tighter
control over what is transcoded and how it is pre-
sented. Content source transcoding allows transcod-
ing to be done before content is encrypted, and so
it can support secure connections. If transcoding is
being done to control who sees what data (for ex-
ample, only allowing users from certain locations full
access to data), performing transcoding at the source
enforces these views.

The major drawback to content source transcoding
is its limited scope. Deploying transcoding in the con-
tent source only affects targeted content from that
server. It is not appropriate when a client is viewing
content from a range of servers. Performing transcod-
ing on the content source server will also impose an
additional load on the resources of the server, and
so may require additional infrastructure enhance-
ments.

The options for deploying content source transcod-
ing depend on the configuration capabilities of the

Figure 10 Using Network Dispatcher

CLIENTS

WEB
SERVERS

WEB
SERVERS

WTP
PROXY

NETWORK
DISPATCHER

WTP
PROXY

•
•

•

•
•

•

•
•

•
•

•
•

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001170

server hosting the content. For this reason, WTP pro-
vides two models for content source transcoding:

1. Servlet filtering
2. Transcoding JavaBeans

In the first option the output from an existing serv-
let or JSP is run through a filter servlet after it is gen-
erated. This option allows content generated by serv-
lets to be transcoded without change to the existing
servlet. Not all Web servers support servlet filter-
ing, since it is not yet part of the servlet API spec-
ification (although this is expected to change). Serv-
let filtering does, however, enjoy enough widespread
support to make it a useful deployment option. WTP
requires both the output from the existing servlet and
information on the original request to successfully
transcode content in this model.

If the Web server does not support servlet filtering,
or if more control is desired over the transcoding
process, the content provider may wish to or need
to explicitly invoke transcoding on generated con-
tent. WTP provides JavaBean transcoders that can
be used to perform image or text transcoding on data
streams.

All Web servers in common use today include ex-
tension APIs that allow the requests and responses
flowing through the server to be intercepted and
modified at various points. A transcoding extension
written to these APIs provides another option for con-
tent source transcoding. However, since these APIs
are Web server specific, they are less portable and
more difficult to deploy on a range of platforms. WTP
does not currently provide support for deployment
at this level.

Application scenarios

Transcoding is used to help make different types of
content available in different formats, allowing new
applications of the content that may be different from
the application for which the content was originally
developed. We provide some example application
scenarios to describe how transcoding can be used
in practice.

Web browsing. One application of transcoding is to
make general Web content available to devices with
limited or specialized user interfaces. In this appli-
cation, the transcoding function is deployed as a
proxy so that no changes are required to any of the
Web servers that are hosting the content. Many of

the transcoding functions described above—such as
HTML simplification, image transcoding, conversion
of HTML to other markup languages like WML, and
deck fragmentation—are relevant in constructing
this application. Since typical Web pages have many
different layouts and semantic information about the
type and value of the content is scarce, it may be dif-
ficult to create a set of transformations that work well
enough for all content of interest. For a Web con-
tent transcoding application to work well in practice,
it is usually necessary to limit the viewed pages to
a selected set and to provide specialized “clippers”
that customize the transcoding or clipping for spec-
ified content. These provisions allow a great deal of
control over how specific pages are transcoded for
specific devices.

Rendering vertical XML. We expect more and more
content to be published in XML dialects that are spe-
cifically designed for a given application domain.
These dialects are called “vertical XML” since they
are specialized for specific applications. These ver-
tical XML dialects have a great deal of semantic in-
formation about the content, but little or no infor-
mation about how it is to be rendered or displayed.
Such rendering information can be defined in XSL
stylesheets, and these stylesheets can be applied to
the vertical XML dynamically to customize the ren-
dering for specific devices or users at the time the
content is delivered. The XSL stylesheet selection and
application function discussed earlier are the key op-
erations for this application.

Host integration. An important application of
transcoding technology is to leverage the existing in-
vestment in legacy applications of an enterprise while
extending its reach to pervasive devices and business
partners via the Internet. Many companies execute
their business processes on host systems (S/390* and
AS/400*) running applications that use 3270, 5250, or
VT protocols. Original legacy applications were built
in an environment where users employed dumb ter-
minals (and later, terminal emulators) to interact
with host programs. The potential risks and costs pro-
hibit companies from porting these existing appli-
cations to any new technology for “competitive ad-
vantage.” Using the transcoding technology will
enhance host integration solutions for use by a va-
riety of devices and business partners.

Following are several ways to extend the reach of
existing host applications to the Internet environ-
ment without modifying existing host applications.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 171

● Develop a downloadable host application emula-
tor using the traditional graphical user interface
(GUI) emulator. These emulators are usually Java
applets24 or ActiveX** controls25 that run inside
a desktop browser. This approach does not fit into
pervasive devices that do not support Java and Ac-
tiveX control.

● Develop a customized user interface by program-
ming against host applications. This approach is
sometimes called “screen-scraping.” Programmers
can write code to interact with host applications
and generate a customized user interface for the
end user. The customized GUI could be in HTML
or WML that can be supported by different devices.
The disadvantage of this approach is its cost, since
programs have to be written for presentations on
different devices.

● Apply transcoding technology as a third approach.
First, we convert host application data into a com-
mon XML format that is display-independent. Then
XSL stylesheets are developed to transform the host
application data to different presentation formats
that fit into different devices. Figure 11 shows the
architecture for this approach. Figure 12 shows an
example of a screen from a host application. Fig-
ure 13 shows the same screen, transcoded for use
on a WAP-enabled phone.

At the design time, the transcoding service is used
for stylesheet association, stylesheet deployment, and

stylesheet storage. At run time, the transcoding ser-
vice retrieves the stylesheet and applies the trans-
formation.

There are many advantages to incorporating transcod-
ing technology in a host integration solution. The re-
engineering of host applications is needed only once.
After the XML data have been generated, data trans-
formations can be performed to generate the proper
format for different client devices and business part-
ners. Great flexibility comes from the fact that the work
of extracting host content is done only once and the
host application can be delivered to any type of client
by applying a proper style transformation. When new
devices are used to access host applications, only new
stylesheets need to be developed. The result is quick
delivery with a minimum development cost of legacy
applications to clients using different devices or to bus-
iness partners.

Performance considerations

Transcoding a document from one format to another
is a computationally intensive operation. To convert
HTML to WML or any other format involves parsing
the HTML document. Converting an image file from
one with the JPG extension (the JPEG, or Joint Pho-
tographic Experts Group, format) to one with the
GIF (graphics interchange format) extension or lower
resolution JPG involves reading and processing the

Figure 11 Architecture of the IBM host integration solution

HOST
APPLICATION
DATA
CONVERTER

3270
5250 XML HTML

WML
XML

XSLT
STYLESHEETS

IBM WEBSPHERE
TRANSCODING
PUBLISHERVT

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001172

entire image and performing floating-point opera-
tions on the data.

The payoff is that Web-based files can be viewed by
devices that normally would not be able to view those
files. An additional benefit for image files is that the
resulting file is much smaller than the original file.
Sometimes the resulting image is less than one-tenth
the size of the original file. This is particularly im-
portant if the user is connected over a slow wireless
connection.

To handle a large number of end users, Transcod-
ing Publisher employs a variety of methods to dis-
tribute the load and reduce the number of transform-
ing documents that it has already transformed.

Transcoding Publisher will use an external cache if
it is configured to do so. The cache interface is an in-
dustry standard, so any caching product that supports
the industry standard will work. When using an exter-
nal cache, the transcoder attempts to fetch the already-
transformed page from the cache. If the page, already
transformed for the requesting device, is found in the
cache, it is returned to the requester. This fetch op-
eration avoids the potentially costly step of convert-
ing the document. If the data are not in the cache,
the act of requesting the data through the cache
mechanism causes the transformed file to be stored
in the cache for the next time data are requested.

Even with an external cache, there will be cache
misses. A processor can become saturated transform-

Figure 12 Example of an original screen of a host application

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 173

ing documents. Several instances of WebSphere
Transcoding Publisher can be run in conjunction with
IBM Network Dispatcher,26 which distributes the load
among them. The client devices do not have to know
that there is more than one transcoder in the net-
work since they are all configured to use the same
proxy Internet Protocol address. With Network Dis-
patcher, more transcoding computers can be added
when a site adds more customers. This permits scal-
ing in a modular fashion.

Benchmarks. There are a number of issues with us-
ing existing Web server or Web proxy benchmarks
such as WebStone27 or SPECweb**28 to evaluate
transcoding performance. Those benchmarks were
developed with the wired Web and full-function
browsers in mind and may not be relevant to the users
of small devices with slow Internet access. The au-
dience targeted by Transcoding Publisher is often
accessing the Web wirelessly using devices that do
not handle the same formats or input devices. The

standard Web server and proxy measurement tools
assume a certain workload or set of workloads. It is
not clear that any of these workloads will be gen-
erated by users of pervasive devices. For example,
the user of an Internet-capable cellular phone prob-
ably does not have the same “think time” charac-
teristics as the user of a desktop Web browser. A
desktop browser has a comparatively large screen.
Therefore, there is more information to read before
another request for a page is required. In contrast,
it is difficult to input information on a cellular phone,
which may lower the request rate.

The user of a desktop browser with high-speed In-
ternet access often does not think twice about fetch-
ing a new page. However, the user of a wireless de-
vice will quickly realize that it takes a long time to
download data from the Web. This realization is
likely to affect usage patterns. For example, some-
one using a desktop browser will not hesitate to use
a search engine to find sites of interest. The user of
a cellular phone is more likely to perform one or two
simple queries. Cache hit rates may also be affected
by different usage patterns. For cellular phones, a
larger percentage of requests is likely to be param-
eterized queries such as “What is the current value
of xxx stock?” Since the answer to the query may
change every time it is asked, caching is not usually
beneficial. Therefore, the mix of simple page fetches
to parameterized queries has a big impact on
transcoding throughput. Transcoding is sensitive to
the type of device that is requesting the information
because different transformations are performed for
different devices. The standard benchmark tests do
not take the requesting device type into account.

The current Web measurement tools need to be
changed to include sets of pages that are typically
fetched by pervasive devices, an appropriate mix of
queries and simple fetches, and an appropriate mix
of different devices. Based on these changes, a new
set of benchmarks needs to be developed to make
it possible to compare competing products, which
today present performance information in very dif-
ferent ways. In addition to standard benchmarks, ca-
pacity planning algorithms are needed in order to
help network designers plan the number of servers
required to support certain workloads.

Some performance measurements. Despite the lack
of relevant, standardized benchmarks, it is still nec-
essary to have some idea of the capacity of the
Transcoding Publisher. To do this, the WebStone
source was modified to send the HTTP headers that

Figure 13 Example of application in Figure 12
transcoded for presentation on a smart phone

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001174

the transcoder uses to identify different devices.
Workloads were also defined that might be typical
for users of devices that have small screens and slow
Internet connections.

In Table 2, the results for two scenarios are shown:
a WAP scenario and a Palm Pilot** scenario. For the
WAP scenario, all the clients are WAP phones fetch-
ing HTML pages. The HTML pages range from 1000
to 3000 bytes. No images are fetched. For the Palm
Pilot scenario, all the clients are Palm Pilot devices.
The same HTML pages are fetched as in the WAP sce-
nario. In addition, some images (JPG and GIF) are
fetched. They range from 500 bytes to 16000 bytes.
Images are fetched one-tenth as frequently as HTML.

The table shows the number of users that can be sup-
ported while maintaining a four-second response
time. All measurements were made on single-pro-
cessor, and two-way and four-way multiprocessor
IBM RS/6000* systems running the Advanced Inter-
active Executive (AIX*) 4.3.3 operating system. Ver-
sion 1.1.2 of Transcoding Publisher was tested.

Because WebStone clients have no think time, the
tests tend to drive processor utilization very high, and
the apparent scalability is less than we expected. In
other experiments we added up to 15 seconds think
time between requests. For those runs, the scaling
from one to two to four processors was almost lin-
ear. The results shown here are for the zero think
time test. The number of concurrent users is an es-
timate of how many real users (who do think about
or read a page before requesting another) can be
using the system concurrently.

Related work

There are several commercial products and research
prototypes whose capabilities are similar to that pro-
vided by IBM WebSphere Transcoding Publisher.29

In this section we describe these systems.

The ProxiNet** transcoding engine30 focuses on de-
livering existing Web (i.e., HTML) information to mo-
bile handheld devices. It uses an ultra-thin client and
relies on a middle tier to perform any necessary
transcoding.31 The ProxiNet engine can filter out
content not compatible with the capabilities of a
handheld device, reformat HTML tables and frames
as lists, and transcode images for these devices by
performing color depth reduction and scaling.

The Spyglass Prism** transcoding engine32 also sup-
ports the transcoding of existing Web content for
Web-enabled non-PC devices. The Spyglass Prism en-
gine is server-based and translates richly formatted
Web content such as tables, JPEGs, and frames into
formats that match the relatively limited display ca-
pabilities of non-PC devices. The engine is also ca-
pable of transcoding images for these devices by
performing color depth reduction and scaling. In ad-
dition, Spyglass Prism is capable of transcoding HTML
to WML.

The Online Anywhere transcoding engine is capa-
ble of transforming content to a variety of informa-
tion appliances, including Web-connected TVs, PDAs,
wireless devices (pagers, data phones), and voice-
only products.

A portal is a gateway that serves as a starting site from
which a user begins Web-browsing activity. There

Table 2 Performance measurements made on an RS/6000 44P Model 270, 375 MHz processor with 2GB RAM running AIX;
Java tuning parameters: ms 5 256, mx 5 512

Test Case Number of
Processors

Number of
Concurrent

Users

Response
Time

Throughput
(megabits/sec)

Pages/Sec

WAP clients only 1 1000 4.32 .33 22.97
(HTML to WML; 2 1400 4.26 .46 32.58
1K to 3K size text files;
no images)

4 2000 3.93 .72 50.43

PDA clients only 1 1300 4.38 .61 29.44
(HTML simplification; 2 1600 4.05 .81 39.13
1K to 3K size text files;
images up to 16K)

4 2500 4.15 1.24 59.77

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 175

are general portals such as the Netscape and Ya-
hoo!** Web sites, as well as specialized portals such
as Garden.com for gardeners and Fool.com for in-
vestors. Typically, a portal has many links to many
other Web sites. Portals can be a significant source
of revenue because of income provided by selling
advertising space (e.g., for banner advertisements)
on the portal site or payments received for directing
significant user traffic to other sites from the portal.

A portal can also provide a means to provide access
to transcoded content. That is, it can serve as a start-
ing point for a set of sites, all of which have been
transcoded for a certain class of devices. For exam-
ple, one can design a WML portal as a starting point
to sites that have been transcoded for WML devices.
Rather than having to transcode all possible HTML
(Web) sites, one can then limit the number of pages
that need to be transcoded into WML to those pages
that are accessible from the portal. WTP can be used
to implement such portals, for example, by using dy-
namic transcoding in conjunction with text clippers
for those sites that can be accessed from the portal.
There are other products in the marketplace, such
as the Oracle Portal-to-Go**, that provide support
for generating such portals, especially for wireless
devices.

Han et al.33 present an analytical framework for de-
termining whether to transcode and how much to
transcode an image for the two cases of store-and-
forward transcoding as well as streamed transcod-
ing, and also provide practical adaptation policies
based upon transcoding delay, transcoded image size
(in bytes), and the estimation of network bandwidth.

The InfoPyramid transcoding engine34,35 is capable
of transcoding content to a variety of client devices.
InfoPyramid is able to perform transformations on
images, video, text (i.e., HTML), and audio to reduce
the amount of content sent to client devices. In ad-
dition, InfoPyramid can also perform modality-based
transformations. InfoPyramid can convert video to
images, video to audio, video to text, text to audio,
and audio to text.

Conclusions and future work

As new types of devices become more prevalent, the
need to adapt existing content for display on a va-
riety of devices is becoming greater. The techniques
presented in this paper are valuable in constructing
solutions that reuse existing content for the new ap-
plications that are made possible by the new device

and network types. We expect these technologies to
continue to evolve to address more applications and
environments and to make it easier to customize the
solutions. The extensive use of standards such as
HTML, XML, and the Java language has been a key
factor in enabling us to quickly build and deliver a
product—WebSphere Transcoding Publisher—that
incorporates these technologies and delivers on the
promised value.

There are several aspects of WebSphere Transcod-
ing Publisher that are excellent avenues for future
work. Transcoding Publisher currently does not pro-
vide automatic conversion of HTML content to a for-
mat suitable for voice-recognition-based browsers.
Providing this type of function (e.g., HTML to
VoiceXML conversion) would enable Transcoding
Publisher to reach a greater range of devices.

The ability of Transcoding Publisher to transform
content in a variety of ways could be leveraged to
adapt content to enable it to be more suitable for
users who have accessibility issues. For example,
Transcoding Publisher could be used to increase the
font size of content to enable it to be read by users
with limited vision capabilities, and content could
be modified such that it was presented in a simpler
form, thus making it suitable for users with atten-
tion deficit disorder or dyslexia.

The clipping and transformation capabilities of
Transcoding Publisher are well suited for the cre-
ation of portals for wireless devices. Adapting
Transcoding Publisher to serve in this capacity is a
valuable avenue for related work.

Transcoding Publisher currently relies upon user
agent identifiers transmitted by browsers to deter-
mine the capabilities of the client. As more formal
methodologies for sending information regarding cli-
ent capabilities such as CC/PP mature, the policies of
Transcoding Publisher for determining how to
transcode for a device should be updated to exploit
this detailed description of capabilities.

Transcoding Publisher could be extended to dynam-
ically adapt its transcoding policies as the environ-
ment in which it is being used changes over time.
For example, image reduction policies could change
when network bandwidth is suddenly reduced.

Finally, Transcoding Publisher needs to be extended
to support emerging formats such as the MPEG-7
(Moving Picture Experts Group) multimedia format

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001176

to allow it to continue to provide first-class support
for cutting-edge wireless devices.

In addition to functional enhancements, it would be
useful for comparing the performance of different
products if standardized performance benchmarks
for mobile devices accessing the Internet were de-
veloped.

Acknowledgments

The authors acknowledge the large international
team that designed, developed, tested, documented,
and marketed WebSphere Transcoding Publisher,
including the core IBM team in Research Triangle
Park, North Carolina; an IBM team in Austin, Texas,
led by Matt Rutkowski that developed the caching
support, especially Andrew Hately who endured four
snowed-in days in North Carolina to make sure it
worked; the IBM Tokyo Research team that devel-
oped the HTML parser vital to the HTML to WML
transcoding, especially Goh Kondoh and Shinichi
Hirose; the IBM Hawthorne Research team that con-
tributed the image transcoding technology, especially
John R. Smith, Chung-Sheng Li, and Richard La-
Maire; the Lotus XSL team that developed the Xalan
XSL transformation engine, especially Scott Boag
who also worked with our customers to improve their
stylesheets; and the IBM Almaden Research team led
by Paul Maglio and Rob Barrett that contributed the
WBI framework at the core of WebSphere Transcod-
ing Publisher and is still working with us to enhance
it. We thank every individual on this extended team
for an exceptional degree of long-distance cooper-
ation.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Massachusetts Institute of Technology, Netscape Communica-
tions Corporation, Microsoft Corporation, Standard Performance
Evaluation Corporation, Palm, Inc., ProxiNet, Inc., OpenTV, Inc.,
Yahoo! Inc., or Oracle Corporation.

Cited references and notes

1. Java, Sun Microsystems, Inc., http://java.sun.com.
2. XML, World Wide Web Consortium, http://www.w3.

org/XML.
3. K. F. Eustice, T. J. Lehman, A. Morales, M. C. Munson,

S. Edlund, and M. Guillen, “A Universal Information Ap-
pliance,” IBM Systems Journal 38, No. 4, 575–601 (1999).

4. Compact HTML for Small Information Appliances, World
Wide Web Consortium, http://www.w3.org/TR/1998/NOTE-
compactHTML-19980209/.

5. Proposal for a Handheld Device Markup Language, World

Wide Web Consortium, http://www.w3.org/TR/NOTE-Sub-
mission-HDML.HTML.

6. Wireless Markup Language is part of the Wireless Applica-
tion Protocol standard from the WAP Forum, http://www.
wapforum.org.

7. S. Chandra, C. S. Ellis, and A. Vahdat, “Differentiated Mul-
timedia Web Services Using Quality Aware Transcoding,”
INFOCOM 2000—Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (March 2000),
http://www.cs.duke.edu/;surendar/infocom00.pdf.

8. IBM WebSphere Application Server, IBM Corporation,
http://www.ibm.com/software/webservers/appserv/.

9. T. F. Abdelzaher and N. Bhatti, “Web Content Adaptation
to Improve Server Overload Behavior,” 8th International
World Wide Web Conference (1999). http://www8.org/
w8-papers/4c-server/web/web.pdf.

10. F. Kitayama, S. Hirose, and K. Kuse, “Dharma: A Frame-
work for Development of Web Applications for Pervasive Ter-
minals—Systems Overview and Application Objects,” IPSJ
57th Annual Convention, in Japanese (1998).

11. S. Hirose, F. Kitayama, and K. Kuse, “Dharma: A Frame-
work for Development of Web Applications for Pervasive Ter-
minals—View Object Generation and HTML Generation
Mechanism,” IPSJ 57th Annual Convention, in Japanese
(1998).

12. F. Kitayama, S. Hirose, and K. Kuse, “Design and Implemen-
tation of Web-Application Development System for Business
Objects and Pervasive Terminals,” IPSJ ’98 Object Oriented
Symposium, in Japanese (1998).

13. F. Kitayama, S. Hirose, K. Kuse, and G. Kondoh, “Design
of a Framework for Dynamic Content Adaptation to Web-
Enabled Terminals and Enterprise Applications,” IPSJ/IEEE
APSEC ’99 (December 1999).

14. IBM WebSphere Transcoding Publisher, IBM Corporation,
http://www.ibm.com/software/webservers/transcoding/.

15. The Apache Software Foundation, http://xml.apache.org.
16. WAP Forum, http://www.wapforum.org.
17. Document Object Model, http://www.w3c.org/DOM.
18. Currently WTP does not have a mechanism to identify in-

dividual users. In the future, WTP will be used in environ-
ments where user identification is possible. In this case, pref-
erences from the user source will also be used.

19. The NetRexx Language, IBM Corporation, http://www2.
hursley.ibm.com/netrexx/.

20. R. Han, “Factoring a Mobile Client’s Effective Processing
Speed into the Image Transcoding Decision,” WOWMOM
’99 (August 1999).

21. A. Fox, S. Gribble, Y. Chawathe, and E. Brewer, “Adapting
to Network and Client Variation Using Infrastructural Prox-
ies: Lessons and Perspectives,” IEEE Personal Communica-
tions 5, No. 4, 10–19 (August 1998).

22. CC/PP, World Wide Web Consortium, specifications at
http://www.w3.org/TR/NOTE-CCPPexchange;http://www.w3.
org/Mobile/IG.

23. R. Barrett and P. Maglio, “Intermediaries: An Approach to
Manipulating Information Streams,” IBM Systems Journal 38,
No. 4, 629–641 (1999).

24. IBM SecureWay Host On-Demand 4.0: Enterprise Communi-
cations in the Era of Network Computing, SG24-2149-01, IBM
Corporation.

25. Attachmate Corporation, http://www.attachmate.com.
26. IBM Network Dispatcher; IBM Corporation, http://www.

ibm.com/software/network/dispatcher/.
27. WebStone benchmark, http://www.mindcraft.com/webstone/.
28. SPECweb99, http://www.specbench.org/osg/web99/.

IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001 BRITTON ET AL. 177

29. R. C. Henderson, B. Topol, C.-S. Li, R. Mohan, and J. R.
Smith, “Taxonomy of Network Transcoding, in Multimedia
Computing and Networking 2000,” K. Nahrstedt and W.-C.
Feng, Editors, Proceedings of SPIE 3969, pp. 65–72 (2000).

30. ProxiNet, http://www.proxinet.com/technology/, now part of
Puma Technology, Inc., http://www.pumatech.com.

31. A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir, “Adapting
to Network and Client Variability via On-Demand Dynamic
Distillation,” ASPLOS-VII, Cambridge, MA (October 1996).

32. Spyglass, Inc., http://www.spyglass.com/, now part of Open-
TV, Inc., http://opentv.com/.

33. R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret,
and J. Rubas, “Dynamic Adaptation in an Image Transcod-
ing Proxy for Mobile WWW Browsing,” IEEE Personal Com-
munications Magazine 5, No. 6, 8–17 (December 1998).

34. J. R. Smith, R. Mohan, and C.-S. Li, “Transcoding Internet
Content for Heterogeneous Client Devices,” Proceedings of
the IEEE International Symposium on Circuits and Systems
(ISCAS), special session on Next Generation Internet (June
1998).

35. J. R. Smith, R. Mohan, and C.-S. Li, “Content-Based
Transcoding of Images in the Internet,” Proceedings of the
IEEE International Conference, Image Processing (ICIP-98)
(October 1998).

Accepted for publication September 22, 2000.

Kathryn Heninger Britton IBM Application Integration Middle-
ware Division, P.O. Box 12195, Research Triangle Park, North Caro-
lina 27515 (electronic mail: brittonk@us.ibm.com). Ms. Britton is
a Senior Technical Staff Member in the Application Integration
Middleware Division. She is the technical leader of the world-
wide research and development team that produced the IBM
WebSphere Transcoding Publisher product, first shipped in March
2000. Since joining IBM in 1981, she has contributed to IBM’s
network architecture, with a focus on two-phase commit proto-
cols and multiprotocol networking. She has also worked on the
development of several software products for networking and mo-
bile computing. She has served as IBM’s representative to the
X/Open XNET working group. Prior to joining IBM, Ms. Brit-
ton worked for the Naval Research Laboratory on software en-
gineering research and technology transfer. She holds a bache-
lor’s degree in English from Stanford University and two master’s
degrees, one in computer science from the University of North
Carolina at Chapel Hill.

Ralph Case IBM Software Group, 4205 South Miami Boulevard,
Research Triangle Park, North Carolina 27709 (electronic mail:
caser@us.ibm.com). Mr. Case is a senior programmer develop-
ing transcoding strategy and technology. He also works on APPNw

architecture and chairs the APPN Implementers Workshop
(AIW). Previously, he helped develop S/390 hardware, special-
izing in channel subsystems, ESCONw, and total systems test. He
has experience building automated tools and cooperative process-
ing systems using communications protocols, knowledge-based
systems, and object-oriented programming. He holds a B.S. in
electrical engineering from Rensselaer Polytechnic Institute.

Andrew Citron IBM Software Group, 4205 South Miami Boule-
vard, Research Triangle Park, North Carolina 27709 (electronic mail:
citron@us.ibm.com). Mr. Citron is currently the team lead for
the Transcoding Publisher and Host Publisher performance team.
He has also been a software developer on Web Express and

Mwavew. Prior to that he was lead architect for IBM’s APPC ar-
chitecture.

Rick Floyd IBM Software Group, 4205 South Miami Boulevard,
Research Triangle Park, North Carolina 27709 (electronic mail:
raf@us.ibm.com). Dr. Floyd received the B.S. degree from Iowa
State University in 1977 and M.S. and Ph.D. degrees from the
University of Rochester in 1982 and 1989. He was a member of
the technical staff at the Clinton P. Anderson Meson Physics Fa-
cility from 1978 to 1981, and at BBN Laboratories Incorporated
from 1987 to 1989. He has been with IBM in Research Triangle
Park since 1989. His research interests include distributed sys-
tems and mobile computing.

Yongcheng Li IBM Application Integration Middleware Division,
4205 South Miami Boulevard, Research Triangle Park, North Caro-
lina 27709 (electronic mail: ycli@us.ibm.com). Dr. Li is a software
engineer in the Advanced Design and Technology Group of the
Application Integration Middleware Division. He currently works
on XML-based application integration and data transformation.
After joining IBM in 1997, he worked on Web-host integration.
Dr. Li received his Ph.D. degree in computer science from Tsing-
hua University in 1993. He is a coinventor on 16 filed patents.

Christopher Seekamp IBM Software Group, 4205 South Miami
Boulevard, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: seekamp@us.ibm.com). Mr. Seekamp is a program-
ming consultant and has been the primary developer and devel-
opment team leader for the text-related portions of the
WebSphere Transcoding Publisher since early in its development.
He has held numerous key positions working on the development
of the various communications software projects. For most of the
last several years he has worked on issues dealing with providing
content to various types of mobile devices, both inside and out-
side of IBM. Over 10 years ago, Mr. Seekamp was an early adopter
of object-oriented design and development techniques and has
been employing object-oriented design and development ap-
proaches in his work ever since.

Brad Topol IBM Software Group, 4205 South Miami Boulevard,
Research Triangle Park, North Carolina 27709 (electronic mail:
btopol@us.ibm.com). Dr. Topol is a member of the AIM/Business
Connection Advanced Technology Group at IBM in Research
Triangle Park. He received the B.S. and M.S. degrees in com-
puter science from Emory University in 1993 and the Ph.D. de-
gree in computer science from the Georgia Institute of Technol-
ogy in 1998. Currently, he is actively involved in advanced
technology projects in the areas of content adaptation, distrib-
uted systems, networking, and graphical user interfaces.

Karen Tracey IBM Software Group, 4205 South Miami Boule-
vard, Research Triangle Park, North Carolina 27709 (electronic mail:
kmt@us.ibm.com). Dr. Tracey received B.S., M.S., and Ph.D. de-
grees in electrical engineering from the University of Notre Dame
in 1987, 1989, and 1991, respectively. She joined IBM at Research
Triangle Park in 1991. She has worked in development for var-
ious products, most recently for Communications Server/390 and
WebSphere Transcoding Publisher.

BRITTON ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 1, 2001178

